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Sector Cache on the SPARCVIIIfx

IOn-demand split of the shared L2 cache.
IUser controlled mapping between accesses and sectors.
→ Isolation of thrashing accesses.
→ Select and keep useful data in cache.

Our Goals

Assess applicability of the sector cache to optimize HPC applications.
I Study potential optimization strategies.
IHelp users find good sector cache optimizations.
IAim for as much automation as possible.

Issues

I Low-level compile-time API.
IHard to predict impact on performance.
I Little support from compiler and performance analysis tools.

Current Sector Cache API

double myarray[NSIZE];
double otherarray[NSIZE];

void mywork(void)
{

int i;
double sum = 0;

#pragma statement cache_sector_size 1 11
#pragma statement cache_subsector_assign myarray

for(i = 2; i < NSIZE-2; i++)
{

// myarray in sector 1
sum += myarray[i-2] + myarray[i-1] +

myarray[i] + myarray[i+1] +
myarray[i+2] + otherarray[i];

}
}

Results

I efficient cache optimization of classical HPC benchmarks.
I framework for locality analysis and optimization of HPC applications.
I on-going automation, already little user action required.

Framework Overview
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Locality Measurements

Reuse Distance: for a memory access, the number of unique
memory locations touched since the previous access to the same
location.
→ an architecture-independent measure closely related to the cache
misses triggered by an application.
→ use it to measure consequences of isolating one structure by itself
with the sector cache.

Reuse exemple

Access :

load 0x10
load 0x20
load 0x30
load 0x10
load 0x20
load 0x10
load 0x30
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Validating the Framework: a toy example
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Selected by framework

Optimizations for all Sector Configurations

Optimizing the NAS Parallel Benchmarks

Benchmark Function Isolated Variables Sector Size Miss Reduction (%) Runtime Reduction (%)
CG conj_grad p (1,11) 19 10

LU

ssor a,b,c,d

(2,10)

48 8
blts ldz,ldy,ldx,d 75 10
buts d,udx,udy,udz 18 3
jacld a,b,c,d 64 14
jacu a,b,c,d 57 6
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